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1. Introduction.

In recent years, the active boundary-layer control by wall-heating has

received a great deal of attention due to its potential applications to drag

reduction in subsonic flow over an airfoil. To support an experimental inves-

tigation undertaken at Langley, a research program on the theoretical study

of active flow control by surface heating/cooling has been initiated by the

principal investigator.

The problem of boundary-layer control has been investigated by various

researchers for many years, (see, e.g., Chapter 14, [1]). Recently Liepmann,

Brown and Nosenchuck [2,3] introducted the wall-heating as an active con-

trol agent to suppress the Tollmien-Schlichting waves in the boundary-layer

in a water tunnel. In their experiments, the boundary-layer distrubances are

also excited by surface heating. They demostrated convincingly that, for a

simple pluse-type of disturbances, the periodic surface-heating with properly

adjusted phase and amplitude can effectively reduce the level of such distur-

bances. This new technique is very promising as a tool in the boundary-layer

control. Later on Maestrello [4] has shown that, in a wind-tunnel, localized

surface heating can be used to trigger instantaneous transition or to reduce

the level of disturbances by coupling it to a feedback acoustic device. To pro-

vide a theoretical justification, Maestrel]o and Ting[5] performed an analysis

of active control by surface heating.

So far the laboratory experiments have been conducted under ideal condi-

tions, where, for instance, the flow distrubance is known to be simple periodic.

The control problem becomes relatively easy. To realize such active control in

a real flow situation with unpredictable disturbances, one needs an automatic



control device. Therefore a rational formulation of sucha problem should be

basedon the optimal control theory [6], which hasbeenthe guiding principle

in the course of our investigation. In contrast with other analytic studies

[7,8], we seemto be the first oneswho introduced the optimal control con-

cept into the problem of active flow control by surfaceheating. A complete

formulation of this problem would involvea coupledsystemof Navier-Stokes

and energy equations subject to a boundary control by surface-heatingel-

ements. However, even without the control, the solution to such problem

is already formidable. Clearly one has to start with a simplified model and

then approachesthe original problem step by step in improving the physical

approximation.

Since the theory of optimal flow control is relatively new, the primary

goal of this research project has been to explore the potential application

of the optimal control theory, which is well developed for finite-dimensional

systems, to a fluid dynamical system. Such system, as an example of the

distributed-parameter system, is infinite-dimensional and, therefore, much

more difficult to deal with. In this report, we shall present a general theory

of the boundary Layer Control by surface heating, which is given in Section 2.

In the next Section, we will describe some analytical results for a simplified

model, i.e., the optimal control of temperature fluctuations in a shear flow.

The result may provide a clue to the effectiveness of the active feedback

control of a boundary layer flow by wall heating. In a practical situation,

the feedback control may not be feasible from the instrumentational point of

view. In this case the vibrational control introduced in systems science can

provide a useful alternative. In Section 4 we briefly explain this principle



and applies it to the control an unstable wavepacketin a parallel shearflow.

Application of suchnovel control technique to more complex fluid mechanical

systems will be explored further.

2. General Theory of Boundary Layer Control by Heating

Consider the viscous flow over a semi-infinite plate lying on y = 0, x >__0,

in the x - y plane. Let the upstream Uoo(x) be perturbed by a disturbance

U(x, y, t) so that the upstream velocity components are

,_= u_ + _Uo(X,y, t), _ = o

where e is a small parameter measuring the magintude of the disturbance.

Suppose Uo, uo,Po and 00 are the Blasius velocity components, the pressure

and the temperature, respecitvely. In the boundary-layer, we set 5 = Uo +

eu,_ = vo+eV,} = Po+eP and 0 = 0o+e0. Then, by a linear stability

analysis of the non-steady thermal boundary-layer equation, we get

Ou Ou Ou Ouo OUo

(1) 0"'t"+ u°0-"_z + VO_y + ---_-zu + --_--yv = V" (# V u) + h.

O0 O0 80 _ 0_0 _ Ouo Ou)
(2) _(55+ _o_ + vow) = ko-_j2 +-s(--g-_-y)(_ •

Ou Ov

(a) N+N=o,

with the boundary conditions

(4)

(f, g),
(_,_) = (0,0),

(Uo,0),

t=O

y=O,x>O

x<Oory=oo



, i

(5) 0 ---- 80, for t = 0, and at x = 0 or oo for t > 0,

O0

ko'_y = -q(x,t) at y = 0

In (1) the kinematic viscosiy # is assumed to depend on the temperature and

the source term h is given by

(6) h(x,y,t) 10p 1.OUo UooOUo OU_: -pOx - + ox +

as a result of the boundary-layer approximation (see Chapter. 15, [1]). In

(2), c is the specific heat and the thermal diffusivity k is assumed to be

constant. The heat flux q in (5) is the control.

As a first approximation, we follow a reasoning by Liepmann et al [2,3].

Since

o.(0) o, o0
(v) oy oo o_ = q(x,t),

Ou
which is proportional to the heat flux across the wall and _ _ 0 away from

the wall, thus we have N i#b-'_)°, o_,_ = v_°u +#7'°_ where v_ is an effective normal

velocity given by v_ = -(-_y) = q near y = 0, and v_ _ 0, away from y = 0.

Introduce the differential operator

0 0 0 _A)u
(8) mu = (_-_ + UO_x + Vo"_x - ,

0_ 02
where A = _ + 5_-_• By the above physical argument, the system (1) - (5)

can be replaced by

OUo

(9) Au +/3v = h, with/3 = Ty'

(i0)
oqu 0v

+ _ = 0 for x > 0, y > 0 and t > 0,
0-_ ay
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w T

(I,#) = o,
(u,v) = (O,vo) at y > o

(U0, 0) for x _< 0 or y = c_

where the energy equation (2) may be neglected.

The above systems form the state equations for the control problem where

the effective velocity ve = q will be used as a boundary control.

Let D = {x > 0,y > 0} be the region above the plate; F0 and F1 be

two disjoint parts of the wall F = {x > 0, y = 0}. For a feedback control,

we measure the shear-stress distribution r over F1 to yield the observation

equation

_'tt

(11) r(x,t) = p#-_y on F1.

For the optimality criterion, we introduce an objective functional or perfor-

mance index J(ve). For example, one may choose

(12) J(ve)= fo T fr_ T_(x't)p(x't)dxdt+ foT fro v_(x,t)_(x,t)dxdt,

where the second integral represents the control cost function, while p and 7

are appropriate weight functions.

Let Q be the admissible set of controls v_ of functions of t and x, for

0 < t <_ T and x in F0 (the porous region). Then the optimal control

problem can be stated as follows:

Find an optimal surface-heating rule v*(7) from the admissible class Q

such that v_* minimizes the observed wall-shear and the control cost, i.e.

(13) J(v:)= min J(ve).
*inQVe



This can be formulated as a problem in variational calculus. If such a solution

q* can be constructed, it will yield a feedback control law

(14) v,=v_(r).

This control law will regulate the injection velocity distribution automatically

based on the wall-shear input.

To be specific, let us consider two special types of problems:

1). Feedback Control of Normal - Mode Instabilities.

For a parallel shear flow subject only to an initial perturbation, we set

v0 = 0 and h - 0 in Equation (8). By introducing a stream function T, the

system (9)- (10) yields

0 _0(y)_(15) [_ + ]A_
,, 0

= Uo(y)-_z_ + R-_A2_,

_(_, v,0)= _0(x,y),

_ [y=0= 0,
(16) _ ly=o'- v_(x,t), o

V¢2 = 0 as y ---+_,

where R is the Reynolds number.

Given the observed wall-shear T, the feedback control law is assumed to

be of the form:

(17) v,(x,t) = f g(x-_)r(_,t)d_= f_f g(x-¢)_y_(¢,O,t)d4,

where g is an optimal transfer function as yet to be determined. For a normal

mode analysis, let

¢(y,t,k) = f _(x,y,t)e_dx =(18) O(y, k)e i_'t
J

6



Then the system (15) - (16) reducesto an eigenvalueproblem for the Orr-

Sommerfeldequation with a modified boundary condition:

(19) L0 = )_MO, y > 0

Here we have put

and

ikO = #_0"and0'=0aty=0,

0 = 0'=0aty=oe.

d

L = -(D2k2) 2,D = -_x'

i = (U-c)(D 2-k 2)-a; U=Uo/c; c=w/k,

= (-iw),

Since the real part Re {_} of the eigenvalue _ yields the growth rate (if

positive) for the normal mode with wave number k. Therefore we choose the

performance index J(ve) = Re {£(v)}. The optimal control problem is to

determine the transfer function _ (or g) so as to minimize the growth rate

J(ve) = J(g). The optimal transfer functions g* will give the optimal control

law via Eq. (17).

2). Optimal Control of Externally Excited Instabilities.

In constrast with the previous problem, the external perturbation h in Eq.

(8) is non-zero. By method of superposition, one assumes that the normal

mode (18) and

(20) _(y,t,k) = f h(x,_,t)_:d:_ = _(y,k)_-_w_.

_(k)=fj(x)_'k'dx.



In view of (20), a Fourier transform of the system (15)-(16) yields a nonho-

mogeneous Orr-Sommerfeld equation with a modified boundary condition:

(21) (L- AM)O = 7z(y,k),y > O,

ikO = #90" and 0' = 0 at y = 0,

0 = 0' = 0 at y = _,

which is a nonhomogeneous boundary-value problem. For a feedback control

of the form (17), we choose the mean kinetic energy of the pertubation as

the performance index:

which in terms of O, reduces to

(22) = ]o {I k)I I

Since J(5,) = ,](_), the control problem at hand is to determine the transfer

function g* which minimizes the mean kinetic energy J. This problem may

be solved by the method of Green's function. Let G(y, rl, k) be the Green's

function for the boundary-value problem (21) so that

(23) O(y,k) = fo_G(y,_,k)h(_,k)d_.

Note that, through a boundary condition in (21), G depends smoothly on

(or 9). A substitution of (23) into (22) shows that J(_) is a functional

of _. Therefore the optimal ._* (or g*) can be determined by the variational

equation

(24) 5J(_) =0.

8



Thereby the optimal control law can be determined. For this problem the

major task is to carry out the variational analysis. Then numerical compu-

tation may be done to show the effectivenessof the optimal control and its

dependenceon various physical parameters.

3. Solution of a Simplified Control Problem

As mentioned before,due to the complexity of the surfaceheating control

problem, an analytical solution is unattainable. Even the numerical solution

is difficult. In this section weshall presenta simplified model problem which

canbe analyzed rather completely.

Recall that the analysisof heatedboundary layers is basedon a coupled

system of the momentum equation (1) and the energy equation (2). One

notes that the coupling betweentheseequation is due to the dependenceof

the viscosity on the temperature. It seemssafeto say that, in the absence

of mechanicaldisturbance, the flow instability can be achievedby reducing

the temperature fluctuation, which is the only sourceof external excitations.

Furthermore we regard the dynamical heat production term in the RHS of

Eq. (2) as an external perturbation denoted by, say,cf(x, y, t), and assume

that the flow is parallel to the plate with u0 = U(y) and v0 = 0. Then we

are led to considering the following optimal heat regulating problem:

(0 0)(25) -_ + U -_x O = u _ + O + f(x,y,t),

00

(26) kO-_y (X,o,t) = -q(x,t),

for t > 0,-oo < x < co, and y > 0, where u - k/c is the thermal diffusivity

and f is an equivalent source of thermal disturbance. Of particular physical

9



interest is the casewherethe perturbation is persistent in time and localized

in space. Thus the perturbing sourcefunction f is assumed to satisfy the

mean-square integrability condition

• 2L-/0(27) Thm-_ Jf(x,y,t)J2dt dx dy < oo.
Oo

As a consequence, the heat flux q, the active control, is expected to have a

similar property

(28) lim 1 fo T/_T-.. _ [q(x,t)12dt dx < cx).
CO

As an optimality criterion, the objective function J given below will be min-

imized,

(29) J(q)= lim 1 [T[r r)o
T--o. 7 Jo,- {lO(x'°'t)l_- + N]q(x't)]2dt dx

Oo

where the first term in the integrand yields the mean-square temperature

fluctuation along the wall, while the second one is a measure of the mean-

square control cost, where N > 0 is a cost parameter. For N = 0, the

minimization of J gives the optimal control _ which is the best possible for

the system to realize. On the other hand, for N > 0, the optimal solution

will be to minimize the wall temperature fluctuation without excessive use

of the control action. The choice of the number N depends subjectively on

the relative importance assigned to two competing factors in the optimality

criterion. Now the mathematical problem for the control of thermal distur-

bances can be formulated as follows: For a given heat source perturbation

f(x,y,t) satisfying the condition (27), find the optimal control _(x,t), with

the property (28), which minimizes the objective function (29) . Here the

10



"state" 0 is the solution of the system (25) and (26) subject to the zero initial

condition. Note that, since the transient part of the solution to the system

will be wiped out by the time average in (29), without loss of generality the

initial condition may be taken to be zero.

Since the governing equation is linear and the functional J is quadratic,

the problem can be solved by the principle of superposition. Therefore it is

sufficient to consider a time-harmonic perturbation

(30) f(x,y,t) = g(x,y)e -a°t.

Then it is possible to seek a time-harnmnic solution

(31) o(x,y,t) = ¢(_,y)_-i_',

and

(32) q(x,t) = ,-(x)_-_''_

A substitution of (30)-(32)into (25), (26), and (29) yields

(33) L¢ = ,V:¢ - U(y) O-_¢ + iw¢ = -g(x,y)
(_IX

(34) O¢(z,o) = -,-(z),

(35)

where ¢ vanishes as la:[ --+ oo or as y ---+ oo.

necessary condition for J being minimal is

(36) 5J(r) =0,

FJ(r) = {]¢(x,o)l 2 + Xlr(x)12}dx,
cO

It is well known that the

11



where5J means the variation of J with respect to r. Note that the quantities

¢, r are complex. Denote their complex conjugates by ¢* and r* respectively.

By introducing an adjoint state _b to ¢, one can derive the following optimal-

ity system [6]

0¢
(37) L¢ = uV2¢ - U(y) "_x + iw¢ = -g(x,y),

0¢ i_¢ = o,(3S) L*¢ = _V_¢ + g(y) 0x -

O¢/x o)- 1 o) 0,
(39) ko_y_ , _¢(x, =

c9¢ _
(40) ¢(x, o) + ko:_-(x, o) = 0.

ay

It is seen that, in order to find the optimal control f, one must solve an

extended system of coupled equations (37)-(40). Then the optimal solution

is given by

(41)

and

_ = _(x)= -_¢(x, o)

(42) 4(x,t) = _(z) e-'_

gives the optimal control for the time-harmonic disturbance (30). In the

multiple frequency case, the optimal control 4 is a sum of the single-frequency

solutions by superposition.

12



Clearly, by a Fourier transform in x, the optimality system (37)-(40) is

reducible to a one-dimensional problem:

(43) _,;V'- [_,:_+ i(:_u+ _)]_ = -_(_, y),

(44) _._"- [._ - i(:_u+_)]_ = o,

(45) ko_'(_,o)- g_(.\,o) = o,

(46) ko;'(_,o)+$(_,o)=O,

where the Fourier transform/(A) of a function f(x) is defined as

F](A) = f(x)ei'X*dx.

Let Cp be a particular solution and ¢1, ¢2, two linearly independent comple-

mentary solutions of the equation (43) such that Iq_l --_ cc as y _ oc. Then

the complex conjugates q_ and ¢_ are linearly independent solutions of (44).

Therefore the bounded solutions of (43) and (44) are given by

(47) _(_,y) = 4_(A,y)-a_,(A,y),

(48) _(X,y) : bq_(A,y),

where, in view of the boundary conditions (45) and (46), the constants a and

b are found to be

a(_) rk_(_*x'_' _¢= Lo_.,j ._ + *,_.](:_,o)/d(_),

= ko(_,_'p- _',_,)(_,o)/_(_),

13



(51)

where

where

"_ gd(_) = (k0[¢,[ + l&[)(A,o).

In view of the equations (43) and (48), by an inverse Fourier transform, the

optimal control law is obtained,

(49) _(x)- 1 f°2 7rN oo

Under the optimal control, the state of thermal fluctuation is given by the

inverse transform of (47):

(50) ¢(x,y)-- _ oo e-i_x[¢p(.k, y)-a(_)¢x(_,y)]d_.

On the other hand, when there is no control (r = 0), the temperature fluc-

tuation Co(X, y) is given by

1 fifo e_i_[_(A,y ) _ ao(_)¢l(._,y)]d_,¢o(X,u)= _ oo

ao(_) = q_'p(_,o)/¢'_(A,o).

To assess the effectiveness of the control, we may introduce either the uniform

reduction ratio

(52) eo = maxe(x) = max. I

or the (root) mean reduction ratio

(53) _,_

¢(_,o)
¢o(Z,o)I'

14



by Parseval's equality in Fourier transform. To give a qualitative physical

interpretation of our results, it is instructive to go through someexamplesin

detail.

Two examplescorrespondingto a time-harmonic perturbation f(x,y,t)

of the form (30) will be considered. In particular the spatial distribution

function g is assumed to be

1 2
(54) g(x,y) = A exp{inx - -_ax - _y}

which represents a decaying surface-wave disturbance with amplitude A, the

wave number J¢, and the exponential decay parameters a and ft. Then the

Fourier transform of g in x is given by

(55)

where

_(_,y) = ho(,\)c-_,

(56) _o(£) = AVC-_e-_(:'+")2.

As the first example, let the velocity U = Uo be a constant. Then the

transformed optimality system (43)-(46) with g given by (54) can be solved

analytically. The transformed optimal solutions (47) and (48) become

(57) ¢(._,y) = h(),) [e-_ - ( l + Nk_*_ ]1+ Nk_l_l_] _-_*_'

(5S) 5(a,y) = h(:,)

where

1 + Nk2oj(J 2

9o(,X)
(59) h(A) - _2(,\) _ j32,

15



and {*(A) is the complex conjugateof _(,_)definedby

(60) ((A) = {A 2 + i(AUo +a_lu)}l/2, Re{_(_)} > O.

By the inverse Fourier transform (49), the optimal control law is found to be

ko
(61) _(x) /_'_= co(1 + Nko2I (A)I )[ (A)+/3]"

Along the wall, from (50) and (51), the controlled and the uncontrolled tem-

perature fluctuations are given by

Nk2o f_,_ _*(A)_o(A) e_ia_dz,(62) c_(z,o) - 27r _ [_(A) +/3](1 + Nko2t((A)l 2)

1 /_,o _o(A) e_i,\,:dA.(63) cko(x,o) = _ _ ((.\)[((A) +/3]

One observes that, if N is large, then/:(z) .-_ o and $(z,o) _ d_o(X,o). That

is, when the control is costly, no control action is taken so that the state is

unchanged. While, if the control cost parameter N is small, we get

(64) _(x) .._ ff'_ {I°(A)e-'A_dA,

and q_(:c,o) ,-_ 0. Thus the unrestricted thermal control almost completely

eliminates the temperature fluctuation along the wall. In fact, in this case,

the control action is to cancel out the heat flux across the wall at any cost.

To simplify the results, let the decay factor a be small. In view of (56),

as a _ 0,9 approaches a 3-function and the otpimal control (55) reduces to

Ahoe inr

(65) _(x) ,-_ [_(__) +/3](1 +

16



The corresponding residual temperature fluctuation (51) becomes

ANk_*(-n)e ''_'_

(66) ¢(x, o) ,,_ [_(_a) +/3](1 +

Recall, by noting (54), that

(67) _(k) = {k 2 + i(kUo +_o/u}l/2, Re{(} > O,

which gives

k,(k)l = {k" + (kUo+

As it turns out, in this case, the uniform reduction ratio and the mean

reduction ratio, defined by (52) and (53) respectively, coincide. In fact we

h ave

Nko=l¢(- )l=
(68) ¢ = 1 + Nko_l¢(-_)l 2 < 1,

where ¢ = Go = era.

From (54) one sees that, as a _ 0, the excited disturbance is a surface

plane wave. The otpimal response ÷ in (65) is also of the same wave form with

a phase-shift arg .{4(-t¢) +/_}. Under the control, the surface temperature

fluctuation is reduced to (66), which has the reduction factor e given by (68).

It shows clearly that increases from 0 to 1 as 77 = Xko2l_(-_)l 2 increases

from 0 to oc. For a fixed control cost parameter N, r/is an increasing function

of i¢ and w, but a decreasing function of v. Therefore the reduction ratio c

and, hence, the effectiveness of the thermal control decreases as the wave

number n or the frequency w of the distrubance increase, while they increase

as the thermal diffusivity v of the fluid increases. These results are physically

17



plausible and may provide some insights into a certain flow control problem

by surface heating or cooling.

As the second example, assume the shear velocity U varying slowly from

zero at the wall to the free stream velocity Uo at the height y = ½, where 5 is

small. Then, by applying the multiple-scale or the WKB Method [9], one can

construct asymptotic solutions to the optimality system (43)-(46), by using

5 as the small parameter. Without giving the derivation, it can be shown

that the first-order asymptotic approximation yields the complementary and

particular solutions to equation (43) as follows:

(69) Cx,2( )_, Y) "_ a( )_, Y) e:rn(:_'_)

and

(7o) 3.(_,y)

where

~ [2_(_,o)]-'{_,(_,y)fo y_(A,s)_(_,s)d_

+ _(_,y)_= _l(_,s)_(_,_)d_}

(71) r/(A, y) =

a (,_,y) --

(72)

{A 2 + i u-_[AU(y) + _]}'/2, Rer/> O,

_(_,o) _/_
,7(_,y) '

and

For a small decay factor, a _ O, by some tedious by straight-forward al-

gebraic manipulations, one can obtain the otpimal control _ and the residual

18



wall temperature fluctuation ¢(x, o) in a simple form:

(73) F(z) ,_-A(1 '+

(74)
k:oN,*(-,,,o)

¢(x,o) 1+ 2

where

(75) -),(A) = a(A, v) e-n(_")-Z_d'r

From (66) it follows that the reduction ratio

Xko2[,(-_,o)l 2
(76) e =

1 + Nko2l (- , o)12"

In contrast with the results (65)-(68) for a uniform shear profile, the

above results (72)-(75) show that, for a slowly varying shear flow, the velocity

variation introduces a shape factor 7 as defined by (69) which modifies the

control and the corresponding temperature fluctuation. In fact it is easy to

verify that if u - Uo, the results (72)-(75) reduce to the previous ones (65)-

(68) with a uniform shear velocity, as they should. Therefore the previous

physical interpretation of those results is still valid, at least qualitatively.

To issustrate the results graphically, some numerical calculations have

been performed when the shear velocity profile is uniform. The numerical

results are displayed in Figs. 2-8. Figure 2 shows the periodic variation

of the thermal control input along the wall as the nondimensionalized wave

number g varies from 0 to 2, where rl = Re{F}, and A = ko =/3 = N = 1.

It is interesting to note that, in response to the periodic distrubance, the

19



controlling heat input risessteeply,as n increases, and then falls off sharply.

This trend is clearly seen in Fig. 3. In Fig. 4, two sets of curves correspond to

the controlled wall-temperature distribution ((1 = Re4) and the uncontrolled

one (_'1 = Re_o), for different values of n. The associated optimal control is

given in Fig. 2. The dependence of the amplitudes of the controlled and the

uncontrolled wall-temperature fluctuations on the wave number _ is shown

in Fig. 5. The above two figures show clearly the effect of the thermal

control on the wall temperature fluctuation at a moderate control cost factor

a = Nk_o = 1. With _ = 1 and the rest of the parameters fixed as before, the

set of curves in Fig. 6 displays the residual wall-temperature distributions

under the optimal control for several values of a, while the corresponding

amplitudes are plotted in Fig. 7 against the effective control cost parameter

a for several values of _. Finally in Fig. 8, the reduction ratio _, which

measures the effectiveness of the control, is sketched as function of the wave

number _, for several values of a. Obviously the optimal control is most

effective in reducing the thermal disturbances with small wave numbers and

a low control cost parameter. The control loses its effectiveness for short-wave

disturbances or when the control cost pararneter gets too high. These findings

seem to be consistent with one's physical intuition. Also it is interesting to

note that, for small wave numbers, the reduction ratio dips into a minimum

value before it takes off and increases monotonically to one.

4. Vibrational Control of Unstable Wavepackets

The principle of vibrational control of dynamical systems was proposed by

Meerkov [10] for control problems where feedback and feedforward principles

2O





vibrational control _(wt) with a high frequencyw >> 1. To this end, let us

scale the time by setting s = wt and c = 1/w. Then Eq. (77) can be written

as

dx

(79) d"_ = cF(x,t,_(s)),

where t = ¢s becomes a slow variable. Note that Eq. (79) is in the canonical

form, in the language of nonlinear oscillation theory. Thus, by the averaging

principle of Bogoliubov and Mitropolski [13], the average state y(t) satisfies

the equation:

(80) dyd--/=#(y,t),

where

F(y,t) = folF(y,t,_(s))ds

is the average of F is s over a period with y,t held fixed. By assumption,

y = Xo is also an equilibrium point of Eq. (79). If it is possible to find a mean-

zero periodic excitation _(wt) at a high frequency w in Eq. (78) so that the

average equation (79) is stable at xo in the mean, then the system (77) with

# = 0 is said to be vibrationally controllable near x = x0. There are two ways

to excite the system: additive excitation and multiplicative (or parametric)

excitation. In the following application, we shall be concerned with the case

of additive vibrational control only. In this case F(x, ; #) = F0(x, t) + # so

that Eq. (77) reads

dx

(81) d--7= Fo(X,t)+
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For vibrational control, we set tz = d_(wt) = _o(wt) in the above equation

to get the controlled system:

dx

(82) d'-7 = &(z' t) + ¢(wt).

Now let

x(t) = + ¢(t),

which is then substituted into Eq. (82) to get

(83) d..£_= Fo(_(wt) + (,t).
dt

If we set Fo(_(wt) + (,t) = F((, t; _(wt)), then Eq. (83) becomes a special

case of the system (78) and the vibrational control method described above

in applicable to this problem. In fact, since _(wt) has a zero mean, the

controlability of Eq. (82) near x0 implies the same for Eq. (81). Now we are

going to apply this technique to control the instability of wavepackets in a

shear flow as announced.

Consider a parallel shear flow in the x-direction. For a two-dimensional

problem, let u(x, t) be the velocity perturbation about the mean flow U at

the Reynolds number R near the critical value Re. Let us write

R = Rc + 52, 5 = tR - Rcl 1/2

and

u(x,t) = 2Re }

where { = 5x and r = 52t, that is, we are seeking a solution in the form of

slowly varying wavepacket. It was shown that the variation of the amplitude
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A of the most unstable mode satisfies the equation [12].

aA aA(84) 0--_+ %-_ + kA- _62glJ12A'

where % is the group velocity; g is the Landau constant, and the complex

constants c and a appear in the following expansion:

= -i& = i&o - icg(_ - _c) + k81/_ - a(a - a_)2 + ....

To simplify Eq. (84), we define

rI=(_-caT ) and B=A/3,

so that it yields:

OB
(85) 0-7- _ _ -02 B 2 eIBIa B.-kB-

It is known that a and k have a positive real part and that, if R > Rc and

g_ = Re {g} < 0, the amplitude may tend to infinity in finite time. Such a

burst is reminiscent of sudden transition to turbulence, (see p 452, [12]). In

order to control the instability, we introduce an additive vibriational control

_.,(r/,wr) and consider the controlled equation:

OB 02B

(86) 0-7 - a -- -Or/2
- k,B- leIBI=B+ ¢(_,_t).

Let us consider a plane wave disturbance of the form

B(_, ,) = b(T)e;e',Im Z = 0,

and the corresponding control

¢(,7,-,t) = ¢(,.ot)da',.
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Then Eq. (86) yields

(87) --db = (k - afl2)b - 1eli,l%+ _(_r),dr

which is of the form (82). If there is no control (_2 = 0), we can derive from

(87) the following equation for R = ]hi2:

(88) dR 2aR ¢.rR 2
dr

where a -- Re {k-aft _} and £r = Re {C}. The logistic equation (88) has the

solution

(89) n(r) = c n,d°V(1 + c d_'),

where c- _ R0 = R(0) and R1 = _ From (89) it is clear that if-- R1-Re _ _ " '

Re _r > 0 and R1 > Ro, the equilibrium R = 0 is unstable. On the other

hand, if Re a < 0 and R1 > Ro, R = 0 is asymptotically stable. However,

for any cr, a burst may occur if R1 < Ro. Now returning to the controlled

equation (87), we let

(90) b(,) = _(_) + _(_),

Then b_ satisfieswhere s = r/¢, ¢ = -_.

db _ 1

ds - e{a[_(s) + b_] - 2 el_' + b_l_(_ + _)}'

which yields the following average equation:

d_ o_ e_(;+ ;*)- el_?_,
(91) d'--_= -

where _2 = fo c22(s) ds and _3 = 0. In contrast with Eq. (87) with 9b = 0,

one cannot solve for /_ = I_1_ in a closed form. To see the effect of the
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vibrational control, let us consider the linear stability near b = 0. Writing

t)r = Re b, bi = Im t), etc., the linearized equation of (91) can be written as:

(92)

where

d_r
= 7,;r - q2bi,

dr

d_____= _br + 21/,.
dv

3_ 2"_, = (_ _ g _ ),_,(_r !<_),2

and

3g _2, 1_ = (_i- _ _ _,_ = (_- <_).

Let us substitute for (b_, hi) by (a_, al)e "\T in Eq. (92) to yield an eigenvalue

problem, for which the characteristic equation reads

=0.

-'12 (_ - _)

The roots of the equation are

1

By the method of finding a maximum in calculus, it is easy to show that

Re a _<(_, - e,_ _)+ {lle,_l_ + 3_} '/_

1 ^2
Thus, if ai = 0, the equilibrium l) = 0 is stable provided that a_ < _g_o .

In contrast with the stability condition o_ < 0 for the uncontrolled case, the

vibrational control can stabilize the system if we make @2 large enough. For

any ai(# 0), this is also true. Of course we pay a price for stability by allowing
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a small zero-meanoscillation about the equilibrium. Further applications of

vibrational control to fluid mechanicalsystemswill bediscussedin our future

work.
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